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Abstract
We study the ground state properties of Bose–Einstein condensation of atomic
hydrogen in the Ioffe–Pritchard magnetic trap using many-body Feynman path
integral theory, which leads to the calculation of the ground state energy and
the wavefunction. We also calculate the size, peak condensate density and
the value of the ground state energy, which are in good agreement with the
experimental results obtained by laser spectroscopy of the 1S–2S transition.

PACS numbers: 31.15.Kb, 03.75.Nt

1. Introduction

In 1998, the first observation of Bose–Einstein condensation (BEC) in spin-polarized hydrogen
was reported by Fried at the Massachusetts Institute of Technology [1–3]. They used dilution
refrigerators, magnetic trapping and RF evaporative cooling. The hydrogen condensate was
detected by laser spectroscopy. That is an important result because hydrogen condensates are
huge, compared with other alkali metal atoms. Moreover, hydrogen has small mass, so the
transition temperature occurs at a higher temperature than for other atoms. Hydrogen is a very
interesting element to study BEC, due to its small scattering length making it an almost ideal
Bose gas.

In this paper, we use Feynman path integral theory to study BEC in hydrogen. By this
method, we can study the properties of the hydrogen condensate from the experimental data
such as ground state energy, wavefunction, size of the condensate, peak condensate density
and distribution of the probability which give useful information for the prediction and study
of the BEC.

2. Feynman path integral theory of BEC in hydrogen

We calculate the ground state properties of atomic hydrogen using Feynman path integral
theory with the assistance of the variational principle. In the experiment, the magnetic trap
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shape that was used to confine hydrogen atoms is called the Ioffe–Pritchard trap with axial
coordinate z and radial coordinate ρ. The potential energy is

V (ρ, z) =
√

(αρ)2 + (γ z2 + θ)2 − θ. (1)

Here α, γ and θ are radial potential energy gradient, axial potential energy curvature and
bias potential energy, respectively. In the limit of ρ � θ/α, the Ioffe–Prithchard potential
is harmonic in the radial coordinate [1], as may be seen by expanding the potential in power
series.

VIP(ρ, z) = γ z2 +
1

2

α2

γ z2 + θ
ρ2 +

1

8

α3

(γ z2 + θ)2
ρ3 + · · · . (2)

First we consider N hydrogen atoms in the Ioffe–Pritchard trap, retaining only the first two
terms of the expansion from equation (2) and treating the interaction among hydrogen atoms
are mean field energy, which is repulsive for s-wave scattering lengths a > 0. The interaction
between condensate and thermal atoms is totally neglected in the present treatment because
this interaction is quite small. Therefore, the Lagrangian for the entire system is written as

L = m

2

N∑
i=1

(
ẋ2

i + ẏ2
i + ż2

i

) −
N∑

i=1

[
γ z2

i +
α2

2
(
γ z2

i + θ
)(x2

i + y2
i

)] −
(

4πh̄2a

m

)∑
ij

δ(ri − rj )

(3)

where the action associated with this Lagrangian is defined as S = ∫
L dt . To solve the density

matrix ρ exactly, we choose the trial action

S0 =
∫ β

0

(
m

2

N∑
i=1

(
ẋ2

i + ẏ2
i + ż2

i

) −
N∑

i=1

[
ω2

zz
2
i + ω2

ρ

(
x2

i + y2
i

)])
dt (4)

where ωz and ωρ are treated as variational parameters. Thus, we can calculate the density
matrix by using the first cumulant expansion as shown below

ρ = ρ0
〈
e− 1

h̄
(S−S0)

〉
S0

� ρ0 e〈− 1
h̄
(S−S0)〉S0

� ρ0 exp



∫ β

0
dt




N∑
i=1

(
m
2 ω2

z − γ
)〈
z2
i

〉
S0

+
N∑

i=1

m
2 ω2

ρ

(〈
x2

i

〉
S0

+
〈
y2

i

〉
S0

)
−

N∑
i=1

α2

2

〈(
x2

i + y2
i

)
γ z2

i + θ

〉
S0

− 4πh̄2a
m

∑
ij

〈
δ(ri − rj )

〉
S0




 (5)

where the average 〈A〉S0 is defined as 〈A〉S0 =
∫ rN (β)

rN (0) DN (rN (t))A exp
[
− S0

�

]
∫ rN (β)

rN (0) DN (rN (t)) exp
[
− S0

�

] . The path integral∫ rN (β)

rN (0)
DN (rN (t)) symbol is given as∫ rN (β)

rN (0)

DN(rN(t)) =
∫ rN (β)

rN (0)

D1(r1(t))

∫ rN (β)

rN (0)

D2(r2(t)).....

∫ rN (β)

rN (0)

DN(rN(t)). (6)

To evaluate the exponent in equation (5), we proceed as follows. We first evaluate averages
〈x2〉S0 , 〈y2〉S0 , 〈z2〉S0 as well as

〈
(x2 + y2)

γ z2 + θ

〉
S0

by using the generating functional [4].〈
exp

[
i

h̄

∫
f (t)x(t) dt

]〉
S0

=
{

exp

[
i

h̄

(
S ′

0cl
− S0cl

)]}
(7)

where S0cl is classical action associated with the trial action S0 and S ′
0cl

is defined as S0cl +∫
f (t)x(t) dt . The averages 〈x(t)〉 and 〈x(t)2〉 can be obtained from
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〈x(t)〉 =
[

δS ′
Cl

δf (t)

]
f (t)=0

(8)

〈x(t)2〉 =
[
− i

h̄

δ2S ′
Cl

δf (t)2
+

(
δS ′

Cl

δf (t)

)2
]

f (t)=0

(9)

where classical force harmonic action S ′
Cl is given by Feynman and Hibbs [4].

S ′
Cl = mω

2 sin ωT




cos ωT
(
x2

2 + x2
1

) − 2x1x2 + 2x2
mω

∫ T

0 f (t) sin ωt dt

+ 2x1
mω

∫ T

0 f (t) sin ω(T − t) dt

− 1
m2ω2

∫ T

0

∫ T

0 f (t)f (s) sin ω(T − t) sin ωs ds dt


 . (10)

Substituting equation (10) into equations (8) and (9) and replacing t by −ih̄t , we obtain

〈x(t)〉S0 = x2 sinh ωρh̄t + x1 sinh ωρh̄(β − t)

sinh ωρh̄β
(11)

and

〈x(t)2〉S0 = h̄

mωρ

sinh ωρh̄(β − t) sinh ωρh̄t

sinh ωρh̄β
+

(
x2 sinh ωρh̄t + x1 sinh ωρh̄(β − t)

sinh ωρh̄β

)2

. (12)

Similarly we can calculate 〈y(t)〉S0 , 〈y2(t)〉S0 , 〈z(t)〉S0 and 〈z2(t)〉S0 . To find the density matrix
we have to integrate equation (12) over t which can be solved exactly as shown below.∫ β

0
〈x2(t)〉S0 dt = h̄β

2ωρm
coth ωρh̄β − 1

2ω2
ρm

+

(
x2

1 + x2
2

)
2ωρh̄

coth(ωρh̄β)

− x1x2

ωρh̄
cosech(ωρh̄β) − 1

2

(
x2

1 + x2
2

)
cosech2(ωρh̄β)β

+ x1x2 coth(ωρh̄β)cosech(ωρh̄β)β. (13)

The next step is to evaluate
〈

x2

γ z2+θ

〉
S0

by using the identity 1
x

= ∫∞
0 e−xq dq and using the first

cumulant expansion. Thus we may write〈
x2

γ z2 + θ

〉
S0

� 〈x2〉S0

∫ ∞

0
e−(γ 〈z2〉S0 +θ)q dq = 〈x2〉S0

γ 〈z2〉S0 + θ
. (14)

Substituting the results for 〈x2〉S0 and 〈z2〉S0 into equation (14) and using the relation
sinh ωρh̄(β − t) sinh ωρh̄t = (cosh ωρh̄β − cosh(2ωρh̄t −ωρh̄β))/2 and 1

1−x
= 1 +

∑∞
n=1 xn,

as well as retaining only the first two terms of the expansion, we obtain∫ β

0

〈x2〉
γ 〈z2〉 + θ

dt = ωzh̄β coth ωρh̄β

ωρ(γ h̄ coth ωzh̄β + 2mωzθ)

+
2mωz

(γ h̄ coth ωzh̄β + 2mωzθ)

((
x2

1 + x2
2

)
2ωρh̄

coth(ωρh̄β) − x1x2

ωρh̄
cosech(ωρh̄β)

)

− 2γmh̄ω2
z

ωρ(γ h̄ coth ωzh̄β + 2mωzθ)2

((
z2

1 + z2
2

)
2ωzh̄

coth(ωzh̄β) − z1z2

ωzh̄
cosech(ωzh̄β)

)

+ · · · . (15)

Our next task is to calculate the average of the delta function. In order to manipulate the delta
function within the path integral, we express it by its Fourier transform,

〈δ(ri − rj )〉 =
∫ ∞

−∞
dk

1

(2π)3

〈
eik·(ri−rj )

〉
S0

. (16)
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We can write

〈exp[ik · (ri (t) − rj (t))]〉S0 = 〈exp[ik · ri (t)]〉S0〈exp[−ik · rj (t)]〉S0 . (17)

Expanding the first factor in the first and second cumulants,

〈exp[ik · ri (t)]〉S0
= exp

[
ik · 〈ri (t)〉S0 − k2 1

2

(〈ri (t)
2〉S0 − 〈ri (t)〉2

S0

)]
. (18)

Similarly the second factor

〈exp[ik · rj (t)]〉S0
= exp

[
ik · 〈rj (t)〉S0 − k2 1

2

(〈rj (t)
2〉S0 − 〈rj (t)〉2

S0

)]
. (19)

The Green function g(t, t) can be defined as

g(t, t) = 〈ri (t)
2〉S0 − 〈ri (t)〉2

S0

= h̄

mωρ

sinh ωρh̄(β − t) sinh ωρh̄t

sinh ωρh̄β
. (20)

Note that the Green function is independent of the particle index. We can write

〈δ(ri − rj )〉 =
∫ ∞

−∞

1

(2π)3
dk exp

[
ik · (〈ri (t)〉S0 − 〈rj (t)〉S0

)]
exp[−k22(g(t, t))]. (21)

Considering the x coordinate, we can solve equation (21) by substituting equations (11)
and (12) into equation (21). Using the formula

∫∞
−∞ dx e−ax2+bx = √

π
a

eb2/4a and replacing t
by −ih̄t we obtain

δ(xi − xj ) =
√

mωρ

4πh̄

sinh ωρh̄β

sinh ωρh̄(β − t) sinh ωρh̄t

× exp


−mωρ

4h̄

(
xi2 sinh ωρh̄t + xi1 sinh ωρh̄(β − t)

−xj2 sinh ωρh̄t + xj1 sinh ωρh̄(β − t)

)2

sinh ωρh̄(β − t) sinh ωρh̄t sinh ωρh̄β


 . (22)

Using the relation e−x =
∞∑

n=0

(−x)n

n! = 1 − x + 1
2x2 + · · · we can write the delta function in three

dimensions as

〈δ(ri − rj )〉S0 =
(

mωρ sinh ωρh̄β

4πh̄ sinh ωρh̄(β − t) sinh ωρh̄t

)(
mωz sinh ωzh̄β

4h̄ sin ωzh̄(β − t) sin ωzh̄t

)1/2

×


1 −




mωρ((xi2 −xj2) sinh ωh̄t+(xi1 −xj1) sinh ωh̄(β−t))
2

4h̄ sinh ωh̄(β−t) sinh ωh̄t sinh ωh̄β

+
mωρ((yi2 −yj2) sinh ωρh̄t+(yi1 −yj1) sinh ωρh̄(β−t))

2

4h̄ sinh ωρh̄(β−t) sinh ωρh̄t sinh ωρh̄β

+
mωz((zi2 −zj2) sinh ωzh̄t+(zi1 −zj1) sinh ωzh̄(β−t))

2

4h̄ sinh ωzh̄(β−t) sinh ωzh̄t sinh ωzh̄β


 + · · ·


 . (23)

Integrating equation (23) by using the same method of calculating 〈x2〉/(γ 〈z2〉+θ) and keeping
only the first order of the expansion ,we obtain∫ β

0
〈δ(xi − xj )〉 dt =

(mωρ

2πh̄
tanh ωρh̄β

) (mωz

2πh̄
tanh ωzh̄β

)1/2
β

+
(mωρ

2πh̄

) (mωz

2πh̄

)1/2
(

m

2h̄2

((
xi1 − xj1

)2
+
(
xi2 − xj2

)2
))

−
(mωρ

2πh̄

) (mωz

2πh̄

)1/2
(

m

h̄2

(
xi1 − xj1

) (
xi2 − xj2

))
sech(ωρh̄β)
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−
(mωρ

2πh̄

) (mωz

2πh̄

)1/2
(

ωρmβ

h̄

((
xi1 − xj1

)2
+
(
xi2 − xj2

)2
))

cosech(2ωρh̄β)

+
(mωρ

2πh̄

) (mωz

2πh̄

)1/2
(

ωρmβ

h̄

(
xi1 − xj1

) (
xi2 − xj2

))
cosech(ωρh̄β)

+ · · · . (24)

In the case of Bose–Einstein condensation in which all particles are confined in a small
region, we may make the assumption that all particles are approximately at the same point
in space. Using equations (13), (15) and (24), we obtain our approximated result for the
density matrix of the system of N particles undergoing Bose–Einstein condensation in the
Ioffe–Pritchard trap as

ρN =
(mωρ

πh̄

)N (mωz

πh̄

)N/2

× exp


−N




ωρh̄ + 1
2ωzh̄ − 1

2ωρh̄ coth ωρh̄β − 1
4ωzh̄ coth ωzh̄β

+ α2ωzh̄ coth ωρh̄β

ωρ(γ h̄ coth ωzh̄β+2mωzθ)
+ h̄γ

2mωz
coth ωzh̄β

+ ah̄ (N − 1)
√

m
2πh̄

ωρ tanh ωρh̄β
√

ωz tanh ωzh̄β


β




× exp




−
(

Nmωρ

4h̄ + Nα2mωz

2h̄ωρ(γ h̄ coth ωzh̄β+2mωzθ)
− N(N − 1)πa

(mωρ

2πh̄

) (
mωz

2πh̄

)1/2
)

×(
ρ2

1 + ρ2
2

)
coth(ωρh̄β)

−
(

Nmωz

4h̄ + Nγ

2ωzh̄
− N(N − 1)πa

(mωρ

2πh̄

) (
mωz

2πh̄

)1/2
) (

z2
1 + z2

2

)
coth(ωzh̄β)




+ · · · . (25)

The density matrix for one particle can be written as

ρ1 =
(mωρ

πh̄

) (mωz

πh̄

)1/2

× exp


−




ωρh̄ + 1
2ωzh̄ − 1

2ωρh̄ coth ωρh̄β − 1
4ωzh̄ coth ωzh̄β

+ α2ωzh̄ coth ωρh̄β

ωρ(γ h̄ coth ωzh̄β+2mωzθ)
+ h̄γ

2mωz
coth ωzh̄β

+ ah̄(N − 1)
√

m
2πh̄

ωρ tanh ωρh̄β
√

ωz tanh ωzh̄β


β




× exp




−
(

mωρ

4h̄ + α2mωz

2h̄ωρ(γ h̄ coth ωzh̄β+2mωzθ)
− (N − 1)πa

(mωρ

2πh̄

) (
mωz

2πh̄

)1/2
)

× (
ρ2

1 + ρ2
2

)
coth(ωρh̄β)

−
(

mωz

4h̄ + γ

2ωzh̄
− (N − 1)πa

(mωρ

2πh̄

) (
mωz

2πh̄

)1/2
) (

z2
1 + z2

2

)
coth(ωzh̄β)




+ · · · . (26)

3. Ground state energy and wavefunction

When BEC occurs, the temperature goes to nearly absolute zero temperature and β =
1

kT
→ ∞ where k is the Boltzmann constant and T is the temperature. Thus

coth ωρh̄β, coth ωρh̄β, tanh ωρh̄β and tanh ωρh̄β → 1. To obtain the ground state energy
we need only the diagonal parts of the propagator, therefore taking the trace is equivalent to
setting −→r (β) = −→r (0).
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Z[β] = Tr[ρ(r(β), r(β))] =
(mωρ

πh̄

)N (mωz

πh̄

)N/2

× exp


−N


 1

2ωρh̄ + 1
4ωzh̄ + α2ωzh̄

ωρ(γ h̄+2mωzθ)

+ h̄γ

2mωz
+ ah̄(N − 1)

√
m

2πh̄
ωρ

√
ωz


β




× exp


−

(
Nmωρ

4h̄ + Nα2mωz

h̄ωρ(γ h̄+2mωzθ)
− N(N − 1)πa

(mωρ

2πh̄

) (
mωz

2πh̄

)1/2
)

ρ2

−
(

Nmωz

2h̄ + Nγ

ωzh̄
− N(N − 1)πa

(mωρ

2πh̄

) (
mωz

2πh̄

)1/2
)

z2


 .

(27)

This means that the ground state energy of the entire system has the energy

E0 = Nh̄

(
1

2
ωρ +

1

4
ωz +

γ

2ωzm
+

α2ωz

ωρ(h̄γ + 2mωzθ)
+ a (N − 1)

√
m

2πh̄
ωρ

√
ωz

)
. (28)

This result agrees with Baym and Pethick [5]. Using the relation
∫∞
−∞ φ0(r)∗φ0(r) d3r = N ,

we obtain the normalized ground state wavefunction in three dimensions from equation (26).

φ0(r) =
√

N

(
m

πh̄

(
ωρ

2
+

α2ωz

ωρ (γ h̄ + 2mωzθ)
− (N − 1)a

√
m

2πh̄
ωρ

√
ωz

))1/2

×
(

m

πh̄

(
ωz

2
+

γ

mωz

− (N − 1)a

√
m

2πh̄
ωρ

√
ωz

))1/4

× exp

[
− m

2h̄

(
ωρ

2 + α2ωz

ωρ(γ h̄+2mωzθ)

−(N − 1)a
√

m
2πh̄

ωρ
√

ωz

)
ρ2

]

× exp

[
− m

2h̄

(
ωz

2
+

γ

mωz

− (N − 1)a

√
m

2πh̄
ωρ

√
ωz

)
z2

]
. (29)

4. Calculation results and discussions

We minimize the ground state energy by solving partial derivative E(ωρ, ωz) from
equation (28) with respect to ωρ ∂E(ωρ, ωz)/∂ωρ = 0. The parameters α, γ and θ for
the trap shape A [1] are γ = 25×k (J cm−2), θ = 35×k (J) and α = 15.9×103 ×k (J cm−1).

A condensate containing 1.2 × 109 atoms is observed in this trap. For hydrogen in the ground
state, the s-wave scattering length a = 0.648 × 10−10 (m) and the mass of hydrogen is
1.6746 × 10−27 kg. If we fix the value of ωz and vary the value of ωρ , then we find two curves
that have maximum and minimum points; in the case of ωρ negative (positive) the curve has
a maximum (minimum) point. If we plot energy against ωz, we find one curve which has a
minimum point. See figure 1.

Physically, the frequency cannot be negative, thus we are interested only in the case of
positive ωρ . From the result of the calculation, we obtain the values, ωρ = (2π) 607.078 Hz,
ωz = (2π) 0.004 342 48 Hz and the ground energy is 2.467 51 × 10−20 J.

We can also calculate the size of the condensate in the IP trap from the full expression
in equation (29). We have to use high significant digit ωρ = (2π) 607.078 045 237 Hz and
ωz = (2π) 0.004 342 477 118 54 Hz because the magnitude of the frequency in the z axis is
very small compared to the ρ axis frequency (ωρ/ωz = 1.4×105). Substituting ωρ and ωz into
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Figure 1. Energy plotted in various ωρ and ωz, respectively.
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Figure 2. Ground state wavefunction plotted in three dimensions.
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Figure 3. The density distribution plotted in radius and z dimension, respectively.

equation (29) so we obtain

ωz

2
+

γ

mωz

− (N − 1)a

√
m

2πh̄
ωρ

√
ωz = ωz

(30)
ωρ

2
+

α2ωz

ωρ(γ h̄ + 2mωzθ)
− (N − 1)a

√
m

2πh̄
ωρ

√
ωz = ωρ.

Therefore, we can conclude that the wavefunction of the system can be written as

φ0(r) = N1/2
(mωρ

πh̄

)1/2 (mωz

πh̄

)1/4
exp

[
−
(mωρ

2h̄
ρ2 +

mωz

2h̄
z2
)]

. (31)

We plot φ0(r) as a function of ρ and z in three dimensions as shown in figure 2. This
wavefunction is very narrow in the ρ direction and very wide in the z direction so we can
calculate the size and the density distribution of the condensate cloud in the trap from the
Gaussian curve in figures 2 and 3.

The length of the condensate in the ρ direction and the length in the z direction are(
2h̄/mωρ

)1/2 = 5.8251 × 10−6 m (2h̄/mωz)
1/2 = 2.1872 × 10−3 m. The width of the
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Figure 4. Wavefunctions plotted for various ρ. The solid line is the φ0(ρ) wavefunction. The
dashed line is the non-interaction wavefunction.

Table 1. Summary of parameters describing the two trap shapes used for achieving BEC and
comparing the results from the experiments [1] to theory.

Parameter Trap A Trap B

α/kB (mK cm−1) 15.9 9.5
γ /kB (µK cm−2) 25 25
θ/kB (µK) 35 ± 2 34 ± 2

χc = χm χc = χm/2 χc = χm χc = χm/2
µ/kB (µK) 1.9 3.8 1.3 2.6
Nc(×109) 1.2 ± 0.2 6.6 ± 1.3 1.2 ± 0.1 6.7 ± 0.5
Minimized parameter ωρ(2π Hz) 607.078 310.777 335.110 169.742
Minimized parameter ωz(×10−52π Hz) 434.248 212.992 640.245 317.724
np(×1015 cm−3) (experiment) 4.8 ± 0.4 ± 1 9.7 ± 0.7 ± 2 3.3 ± 0.1 ± 0.7 6.5 ± 0.2 ± 1.3
np(×1015 cm−3) (theory) 8.21 16.4 5.5 11.0
Length 2ρmax (µm) (experiment) 15 21 20 28
Length 2ρmax (µm) (theory) 11. 7 16.3 15.7 22.1
Length 2zmax (mm) (experiment) 5.5 7.8 4.5 6.4
Length 2zmax (mm) (theory) 4. 3 6.2 3.6 5.1
Total energy (J) (experiment) 2.25 × 10−20 2.47 × 10−19 1.54 × 10−20 1.67 × 10−19

Total energy (J) (theory) 2.47 × 10−20 2.65 × 10−19 1.65 × 10−20 1.82 × 10−19

condensate in the ρ direction is small compared with the length in the z direction which
makes the condensate a thread shape. And then we can calculate the peak condensate density,
the maximum density at the centre of the trap |φ(0, 0)|2 = N(mωρ/πh̄) (mωz/πh̄)1/2 =
8.2130 × 1015 cm−3. We find that the ground state energy is in good agreement with the
experimental result [1]. We can continue calculating energy in other trap shapes by path
integral theory and compare them to calculations from the Thomas-Fermi approximation [1].
The results are shown in table 1.

Recall the ground state wavefunction from equation (29) and consider in ρ dimension.

φ0(ρ) =
√

N

(
m

πh̄

(
ωz

2
+

γ

mωz

− (N − 1)a

√
m

2πh̄
ωρ

√
ωz

))1/4

×
(

m

πh̄

(
ωρ

2
+

α2ωz

ωρ (γ h̄ + 2mωzθ)
− (N − 1)a

√
m

2πh̄
ωρ

√
ωz

))1/2

× exp

[
− m

2h̄

(
ωρ

2
+

α2ωz

ωρ (γ h̄ + 2mωzθ)
− (N − 1)a

√
m

2πh̄
ωρ

√
ωz

)
ρ2

]
. (32)
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We now study the effect of the atom–atom interactions in the wavefunction in figure 4.
The dashed line represents only the first two terms in equation (32) and the solid line is φ0(ρ)

which is broadened by repulsive atom–atom interaction and similarly for the z direction.
Therefore, this is the reason why repulsive atom–atom interactions lead to an expansion of the
condensate length in the z and ρ directions.

5. Conclusion

We have calculated the ground state energy and the wavefunction of Bose–Einstein
condensation of atomic hydrogen by the many-body Feynman path integral theory. We
predicted and studied the behaviour and properties of the hydrogen condensate such as the
size of the condensate cloud, peak condensate density and the value of the ground state energy.

When Bose–Einstein condensation occurs, the macroscopic fraction of the hydrogen
atoms occupies the lowest energy of about 10−20 J and all atoms have the same wavefunction.
This wavefunction gives information about the size of the condensate and the density
distribution. We found that many atoms occupy a very small volume under the influence
of a magnetic trap and interaction among the atoms, the diameter is ∼ 12 µm and the length
is ∼5 mm. The peak density is ∼8 × 1015 cm−3, which is maximum at the centre of the trap.
However, hydrogen condensates are huge when compared with the other alkali metal atoms.
These results have been obtained by the simple way used in [6]. Also, the results from path
integral theory are in good agreement with the Thomas–Fermi approximation which is used
for calculation in the experiment [1].

The calculation in Feynman path integral theory, however, is very complicated which very
much differs from the simple Thomas–Fermi approximation. Nevertheless, Feynman’s path
integral has advantages over the Thomas–Fermi approximation in that it is more realistic since
we do not neglect the kinetic energy term, although it is very small. The results are therefore
more reliable. It is interesting to see if this method can be applied to study the properties of the
excited states and other states of atomic hydrogen; it is our hope that this will be accomplished
in the future.
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